Adaptive Modified PCA for Face Recognition
نویسندگان
چکیده
This paper presents a novel hybrid method for extracting license plates and recognizing characters from low-quality videos using morphological operations and Adaboost algorithm. First of all, the hybrid method uses the Adaboost algorithm for training a detector to detect license plates. This algorithm works well to detect license plates having lower intensities but fails to detect license plates if they are skewed. Thus, we use a morphology-based scheme to detect inclined license plates. The morphology-based scheme extracts important contrast features for searching possible license plate candidates. The contrast feature is robust to lighting changes and invariant to different transformations. The hybrid method can avoid the significant growth of training samples for training the detector to detect any oriented license plates. Then, a new segmentation method is proposed for character segmentation and recognition. Even though lower-quality video frames are handed, our method still performs very well to recognize desired license plates. The proposed technique can locate and recognize multiple plates in real time even if they have different orientations or lower intensities. Experimental results show that the proposed method improves the state-of-the-art work in terms of effectiveness and robustness for license plate recognition in low resolution and low quality source.
منابع مشابه
Face Detection at the Low Light Environments
Today, with the advancement of technology, the use of tools for extracting information from video are much wider in terms of both visual power and the processing power. High-speed car, perfect detection accuracy, business diversity in the fields of medical, home appliances, smart cars, humanoid robots, military systems and the commercialization makes these systems cost effective. Among the most...
متن کاملPose Invariant Face Recognition using Neuro-Fuzzy Approach
In this paper a pose invariant face recognition using neuro-fuzzy approach is proposed. Here adaptive neuro fuzzy interface system (ANFIS) classifier is used as neuro-fuzzy approach for pose invariant face recognition. In the proposed approach the preprocessing of image is done by using adaptive median filter. It removes the salt pepper noise from the original images. From these denoised images...
متن کاملتشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملFace Recognition Using Neural Network with Pca–mbp Algorithm
In this paper, a face recognition system for personal identification and verification using Principal Component Analysis (PCA) with Modified Back Propagation Neural Networks (MBPNN) is proposed. The dimensionality of face image is reduced by the PCA and the recognition is done by the MBPNN. The system consists of a database of a set of facial patterns for each individual. The characteristic fea...
متن کاملPerformance analysis of Linear appearance based algorithms for Face Recognition
Analysing the face recognition rate of various current face recognition algorithms is absolutely critical in developing new robust algorithms. In his paper we propose performance analysis of Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Locality Preserving Projections (LPP) for face recognition. This analysis was carried out on various current PCA, LDA and LPP based...
متن کامل